29 research outputs found

    Finding Significant Fourier Coefficients: Clarifications, Simplifications, Applications and Limitations

    Get PDF
    Ideas from Fourier analysis have been used in cryptography for the last three decades. Akavia, Goldwasser and Safra unified some of these ideas to give a complete algorithm that finds significant Fourier coefficients of functions on any finite abelian group. Their algorithm stimulated a lot of interest in the cryptography community, especially in the context of `bit security'. This manuscript attempts to be a friendly and comprehensive guide to the tools and results in this field. The intended readership is cryptographers who have heard about these tools and seek an understanding of their mechanics and their usefulness and limitations. A compact overview of the algorithm is presented with emphasis on the ideas behind it. We show how these ideas can be extended to a `modulus-switching' variant of the algorithm. We survey some applications of this algorithm, and explain that several results should be taken in the right context. In particular, we point out that some of the most important bit security problems are still open. Our original contributions include: a discussion of the limitations on the usefulness of these tools; an answer to an open question about the modular inversion hidden number problem

    The Security of All Private-key Bits in Isogeny-based Schemes

    Get PDF
    We study the computational hardness of recovering single bits of the private key in the supersingular isogeny Diffie--Hellman (SIDH) key exchange and similar schemes. Our objective is to give a polynomial-time reduction between the problem of computing the private key in SIDH to the problem of computing any of its bits. The parties in the SIDH protocol work over elliptic curve torsion groups of different order NN. Our results depend on the parity of NN. Our main result shows that if NN is odd, then each of the top and lower O(loglogN)O(\log\log N) bits of the private key is as hard to compute, with any noticeable advantage, as the entire key. A similar, but conditional, result holds for each of the middle bits. This condition can be checked, and heuristically holds almost always. The case of even NN is a bit more challenging. We give several results, one of which is similar to the result for an odd NN, under the assumption that one always succeeds to recover the designated bit. To achieve these results we extend the solution to the chosen-multiplier hidden number problem, for domains of a prime-power order, by studying the Fourier coefficients of single-bit functions over these domains

    A note on isogeny-based hybrid verifiable delay functions

    Get PDF
    Using the idea behind the recently proposed isogeny- and paring-based verifiable delay function (VDF) by De Feo, Masson, Petit and Sanso, we construct an isogeny-based VDF without the use of pairings. Our scheme is a hybrid of time-lock puzzles and (trapdoor) verifiable delay functions. We explain how to realise the proposed VDF on elliptic curves with commutative endomorphism ring, however this construction is not quantum secure. The more interesting, and potentially quantum-secure, non-commutative case is left open

    Characterizing overstretched NTRU attacks

    Get PDF
    Overstretched NTRU, an NTRU variant with a large modulus, has been used as a building block for several cryptographic schemes in recent years. Recently, two lattice \emph{subfield attacks} and a \emph{subring attack} were proposed that broke some suggested parameters for overstretched NTRU. These attacks work by decreasing the dimension of the lattice to be reduced, which improves the performance of the lattice basis reduction algorithm. However, there are a number of conflicting claims in the literature over which of these attacks has the best performance. These claims are typically based on experiments more than analysis. Furthermore, the metric for comparison has been unclear in some prior work. In this paper, we argue that the correct metric should be the lattice dimension. We show both analytically and experimentally that the subring attack succeeds on a smaller dimension lattice than the subfield attack for the same problem parameters, and also succeeds with a smaller modulus when the lattice dimension is fixed

    Characterizing overstretched NTRU attacks

    No full text
    Overstretched NTRU is a variant of NTRU with a large modulus. Recent lattice subfield and subring attacks have broken suggested parameters for several schemes. There are a number of conflicting claims in the literature over which attack has the best performance. These claims are typically based on experiments more than analysis. In this paper, we argue that comparisons should focus on the lattice dimension used in the attack. We give evidence, both analytically and experimentally, that the subring attack finds shorter vectors and thus is expected to succeed with a smaller dimension lattice than the subfield attack for the same problem parameters, and also to succeed with a smaller modulus when the lattice dimension is fixed

    Characterizing overstretched NTRU attacks

    No full text
    corecore